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Abstract resolution data from long-term deployments, and 
allow for consistent monitoring of isolated and 

A seven-year time series of fin whale offshore regions. The value of passive acoustic 
(Balaenoptera physalus) acoustic detections in monitoring of large whales producing loud, low-
the Equatorial Pacific Ocean was examined in frequency vocalizations detected in U.S. Navy 
combination with regional environmental param- Sound Surveillance System (SOSUS) recordings 
eters to better understand fin whale seasonal dis- was first demonstrated by Watkins et al. (2000), 
tribution and behavioral ecology in a traditionally which provided previously intractable informa-
undersampled ocean region. Ecological modeling tion on blue (Balaenoptera musculus) and fin 
of environmental variables related to fin whale (Balaenoptera physalus) whale seasonal presence 
vocal presence indicated that median sound pres- and calling patterns in the offshore waters of the 
sure spectral density level in the 5 to 115 Hz North Pacific. Multiple long-term passive acous-
band, chlorophyll concentration, and sea surface tic studies combined with synoptic measurements 
temperature (SST) were the strongest predictors of environmental parameters extended the knowl-
of fin whale presence. Fin whale vocal presence edge base of large whale behavioral ecology in 
increased with increasing median sound level and both coastal and offshore environments by linking 
decreased with increasing SST. Variation in sea- vocal behavior to local, regional, and ocean basin 
sonal fin whale call density and estimated animal scale oceanographic features (Moore et al., 2002; 
density varied annually with one of the largest Stafford et al., 2005, 2009; Širović et al., 2015).
estimates occurring in the only year of the study Sea surface temperature (SST) was observed 
when both the El Niño–Southern Oscillation to be the best predictor of fin whale call detec-
and Pacific Decadal Oscillation were in a posi- tions in the North Pacific by Stafford et al. (2009). 
tive phase. This work illustrates the feasibility At the time of publication, this was the largest 
and value of applying knowledge of call detec- spatio-temporal study examining the relationship 
tion bearings and received levels from long-term, between oceanographic features and whale vocal 
sparse array recordings to estimate animal density behavior. Peak vocal periods occurred during the 
of marine mammals in the context of regional fall and winter months following a 3 to 4 mo lag 
environmental conditions. in peak SST when waters were cooling. As SST 

is strongly correlated with primary production, 
Key Words: acoustics, density estimation, environ- and secondary production of zooplankton tracks 
mental modeling, fin whale, Balaenoptera physalus in time with phytoplankton blooms by several 

weeks to months (Longhurst, 2007), it logically 
Introduction follows that the peak vocal periods lagging peak 

SST by 3 to 4 mo likely corresponds with peaks 
Passive acoustic recordings are increasingly being in zooplankton abundance for foraging fin whales. 
used to provide insight into marine mammal In the North Atlantic Ocean, Visser et al. (2011) 
behavioral ecology, communication, distribution, reported the peak in fin whale visual sightings lag-
and migration patterns. Compared to traditional ging behind the spring phytoplankton bloom by 3 
visual observation methods of stock assessment to 4 mo and connected the lag to the time required 
from ships, remotely deployed passive acoustic for zooplankton abundance to increase following 
sensors are non-invasive, provide high temporal the spring phytoplankton bloom.
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An acknowledged limitation of the interpreta-
tion of the results by Stafford et al. (2009) was that 
the changes in vocal behavior could not be con-
clusively linked to changes in number of whales, 
as was accomplished by Visser et al. (2011) 
with daily visual surveys. Seasonal increases in 
vocal detections could be a result of an increase 
in the number of vocalizing whales, but it could 
also be a result of changing vocal behavior due 
to increasing call production rate or variations 
in ambient sound levels impacting detectability. 
The behavioral context is also crucial in interpret-
ing increases in call activity as whales have been 
observed to increase call rate following produc-
tive feeding periods (Payne & Webb, 1971).

In two Northeast Pacific long-term studies 
(Stafford et al., 2009; Širović et al., 2015), over-
all fin whale calling activity was observed to 
increase over the duration of the multi-year study, 
suggestive of population recovery post-whaling. 
However, in both cases, it was again not pos-
sible to correlate the increasing trend with actual 
number of whales. Interpretation of the vocal 
activity increase in these studies was augmented 
by the concurrent visual surveys, which were con-
sistent with an increase in visual sightings con-
sistent with observations of population recovery 
post-whaling (Barlow & Forney, 2007; Campbell 
et al., 2015).

Comparing passive acoustic monitoring stud-
ies with dedicated visual survey effort in the 
same region is one way to make a direct link 
between changes in vocal detections and animal 
abundance to address management and conserva-
tion concerns related to population status or cor-
relations to biophysical oceanographic features. 
However, methods in passive acoustic density 
estimation have also been developed to estimate 
absolute animal density from acoustic record-
ings. Acoustic density methods have been used 
to estimate densities of fin whale (McDonald & 
Fox, 1999; Harris et al., 2018b), several species of 
beaked whale (Marques et al., 2009; Moretti et al., 
2010; Küsel et al., 2011; Hildebrand et al., 2015), 
right whale (Eubalaena japonica; Marques et al., 
2011), sperm whale (Physeter macrocephalus; 
Barlow & Taylor, 2005; Ward et al., 2012), minke 
whale (Balaenoptera acutorostrata; Marques 
et al., 2012; Martin et al., 2013), harbor porpoise 
(Phocoena phocoena; Kyhn et al., 2012), and 
finless porpoise (Neophocaena phocaenoides; 
Kimura et al., 2010). A variety of passive acoustic 
density estimation methods were employed across 
this set of studies and included distance sampling 
(Marques et al., 2011), spatial capture-recapture 
(SCR, also known as spatially explicit capture-
recapture; Marques et al., 2012; Martin et al., 
2013), census/strip transect methods (Moretti 

et al., 2010; Ward et al., 2012), and a variety of 
methods using auxiliary data (Marques et al., 
2009; Kimura et al., 2010; Küsel et al., 2011; 
Harris et al., 2018b). The selection of method was 
study-specific and dependent on the information 
available from which the probability of detection, 
a key parameter in density estimation, could be 
estimated (see the review by Marques et al., 2013, 
for a detailed explanation of method details and 
assumptions).

Of the 13 studies cited above, seven took 
place on U.S. Navy ranges instrumented with 
a cabled system of 14 to 82 bottom-mounted 
hydrophones. Access to instrumented ranges is 
relatively rare, and the more commonly employed 
sparse arrays often do not meet the data require-
ments of density estimation methods achievable 
using recordings from a range. In particular, the 
sparse three-sensor array configuration of the 
hardware available in the Harris et al. (2018b) 
3-mo pilot study did not meet the requirements 
of distance sampling or SCR methods, so a new 
method was developed to estimate detection prob-
ability and, ultimately, animal density for which 
only horizontal bearings to calling animals were 
estimable. The horizontal bearings method also 
requires knowledge of auxiliary information, 
including the call signal-to-noise ratio (SNR—a 
ratio of mean-square pressure of the signal to the 
mean-square pressure of the noise), source level, 
sound propagation, and call production rate. It is 
this method that the present study employs to esti-
mate seasonal fin whale density from recordings 
by the Comprehensive Nuclear-Test-Ban Treaty 
Organization International Monitoring System 
(CTBTO IMS) hydrophones at Wake Island in the 
Pacific Ocean.

A majority of previous acoustic density esti-
mation studies reflected the development and 
validation of methods in focused, short-term pilot 
investigations lasting from an hour of data collec-
tion (Marques et al., 2012) to less than a year in 
most cases. In four instances, data collection peri-
ods exceeded a year and were applied to press-
ing questions related to abundance and seasonal 
distribution of two endangered species and three 
protected species. Marques et al. (2011) analyzed 
a year of data over two separate time periods from 
2001 to 2002 and 2005 to 2006 to provide tenta-
tive estimates of total North Pacific right whale 
population size along the eastern Bering Sea shelf. 
Kimura et al. (2010) applied density estimation 
results for Yangtze finless porpoises (Neophocaena 
phocaenoides asiaeorientalis) to an examina-
tion of seasonal migration behavior. Multi-year 
abundance estimates of Cuvier’s beaked whales 
(Ziphius cavirostris) and Blainville’s beaked 
whales (Mesoplodon densirostris) were made on 
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two U.S. Navy ranges to contribute knowledge of the best environmental predictors of local fin 
beaked whale population trends in relation to range whale vocal presence. Seasonal density was then 
activities (DiMarzio et al., 2018). DiMarzio et al. estimated from all fin whale calls automatically 
(2018) reported abundance estimates in absolute detected when the animals were seasonally present 
numbers of animals each month, which can easily from November to March in this region from 2007 
be converted to animals per unit area given the to 2013 (Mizroch et al., 1984; Soule & Wilcock, 
areas of the two ranges. Finally, Hildebrand et al. 2013). 
(2015) estimated the density of Cuvier’s beaked 
whales and Gervais’ beaked whales (Mesoplodon Predictors of Fin Whale Vocal Presence
europaeus) in the Gulf of Mexico between 2010 Acoustics—The hourly presence/absence of the 
and 2013. To our knowledge, the present study is fin whale 20-Hz song unit was manually assessed 
the first study to use passive acoustic density esti- over the duration of the H11N1 dataset and rep-
mation methods outside of instrumented military resented the number of hours of vocal presence 
ranges to assess regional baleen whale density within the active acoustic space of the hydrophone 
over multiple, contiguous years in the context of per day. Hourly presence for this portion of the 
oceanographic features. study was only assessed on hydrophone H11N1; 

The goal of this study was to determine the localization of individual calls necessary for den-
best environmental predictors of the endangered sity estimation was not required for this portion 
fin whale vocal behavior in the Equatorial Pacific of the study, so it was not necessary to run redun-
around Wake Island, and then to relate this knowl- dant analyses on all hydrophones in the array triad 
edge to the interpretation of seasonal animal den- due to their close spacing. Protocol guiding the 
sity estimates over a 7-y time period. The first manual detection of 20-Hz fin whale call presence 
phase of the study consisted of compiling time within an hour marked the top of each hour as the 
series of ocean sound statistics, satellite estimates starting point. Manual scanning of the data con-
of chlorophyll concentration, SST, primary pro- tinued until either a fin whale call was detected 
ductivity, and regional shipping levels as explana- or 60 min without calls was achieved indicating 
tory variables to best explain patterns of fin vocal absence. When a call was detected, it was 
whale vocal presence using the 20-Hz song unit logged, and the review progressed to the start of 
as a proxy for fin whale presence. Detections of the next hour. “Hourly vocal detection” was the 
individual fin whale 20-Hz calls were then trans- response variable in the models developed to 
lated into seasonal estimates of fin whale density assess the best environmental predictors of fin 
in an attempt to relate changes in animal density whale presence. 
to regional environmental conditions and large- Full spectrum mean-square sound pressure spec-
scale oceanographic features such as the El Niño– tral density levels were averaged over each minute 
Southern Oscillation (ENSO) and Pacific Decadal of the dataset (5 to 115 Hz), and all occurrences 
Oscillation (PDO). of the terms sound levels and noise levels through-

out the rest of this work refer to mean-square 
Methods sound pressure spectral density levels. Full spec-

trum mean-square sound pressure spectral density 
Data for the local- and basin-scale respective analy- levels were considered because fin whales produce 
ses of fin whale vocal presence and density estima- vocalizations across the entire spectrum of the 5 
tion were obtained from the CTBTO IMS hydro- to 115 Hz band available in the CTBTO IMS data 
phones at Wake Island (19° 18' 30.7872" N, 166° even though only the 20-Hz call was used in the 
37' 51.6432" E) in the Pacific Ocean. Data from the environmental and density estimation analyses. 
three hydrophones of the northern triangular array Frequencies below 5 Hz and above 115 Hz were 
(H11N1, H11N2, and H11N3, spaced 2 km apart) not included due to the steep roll-off of hydrophone 
where the average water depth was 1,425 m (esti- response at these frequencies. Mean-square sound 
mated from Amante & Eakins, 2009) were used pressure spectral density levels were calculated 
in this study. Hydrophones were suspended in the using a Hann windowed 15,000 point Discrete 
deep sound channel at depths of 731 m (H11N1), Fourier Transform with no overlap to produce 
721 m (H11N2), and 746 m (H11N3). Recording sequential 1-min spectral density estimates over 
was continuous at a sampling rate of 250 Hz and the duration of the dataset. “Sound levels” were 
24 bit analog-to-digital (A/D) resolution (see included as predictor variables in the models in 
Lawrence, 2004, and Miksis-Olds et al., 2013, addition to being used to assess signal detection 
for details on CTBTO IMS monitoring stations area directing the acquisition scale of the satel-
and recording characteristics). “Hourly fin whale lite products (see below). A note of importance, 
vocal presence” from 2007 to 2012 was used as the “sound level” predictor variables included 
the response variable in the analysis to determine more than just the fin whale contribution to the 
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soundscape, capturing the acoustic input of other Evaluation Project website (http://wiki.icess.ucsb.
biological, geological, and anthropogenic sources edu/measures/Main_Page); SST and [Chl] were 
present. obtained from the NASA Ocean Color website 

Daily percentile parameters for each frequency (http://oceancolor.gsfc.nasa.gov); and SST observa-
(P1, P50, and P99) were identified from the 1-min tions were acquired at night in the 4 micron night-
spectral density estimates (Miksis-Olds et al., time microwave band. The NASA standard chloro-
2013; Miksis-Olds & Nichols, 2016). P1 is indica- phyll imagery product for [Chl] was utilized in each 
tive of the soundfloor (i.e., quietest periods) with region (O’Reilly et al., 1998, 2000). All imagery 
characteristics of underlying geologic processes time series were compiled from the start of the mis-
(geophony) created by wind and waves (Pijanowski sion in June 2002 through the end of 2012. Pixels 
et al., 2011); P50 is the median and includes sound were extracted that were within the season-specific 
produced by biologic (biophony), geologic, and signal detection area for fin whale song units within 
distant anthropogenic (anthrophony) sources; and the 10 to 30 Hz band detected around Wake Island. 
P99 represents the loudest periods of the day which Any pixels within a water column less than 50 m 
were most often dominated by loud sources very deep were eliminated to ensure there were no inac-
close to the hydrophone either of biologic or human curacies in the satellite products caused by bottom 
origin (Miksis-Olds & Nichols, 2016). impacts.

Shipping—The “level of regional shipping” was Statistical Modeling—The temporal resolution 
a predictor parameter of interest. The number of of the response and predictor data sources differed. 
ship movements, an indicator of regional shipping The acoustical metrics (sound pressure level [daily 
activity, was recorded quarterly and was acquired percentile levels] and vocal presence [# h/d]) were 
from Lloyd’s List Intelligence (London, UK). The daily, shipping was quarterly, and satellite products 
data contained the number of ship movements were 8 d. All data were merged to match the 8-d 
in and out of Pacific Ocean ports; the “total ship resolution of the satellite imagery. All daily ocean 
movements” parameter used in the statistical mod- sound levels for a given 8-d period were averaged 
eling included the combined total movements of for that period. The hourly whale detection data 
container, dry bulk, gas, general cargo, tanker, and were summed for each 8-d period and, thus, could 
other vessels. The data were acquired from the first range from 0 to 192 (8 × 24) for each 8-d period. 
quarter of 2002 (coinciding with the earliest CTBTO The quarterly ship movements were divided equally 
observations) to the end of the third quarter in 2011 between each 8-d period of a quarter.
(the time that the data were requested). However, Generalized linear and additive models (GLM 
the data recording methods of Pacific Ocean ship and GAM) were used to investigate the relationship 
movements changed in the fourth quarter of 2010, between the number of hours per 8-d period that fin 
precluding the remainder of the shipping observa- whales were manually detected vocally (response 
tions in the analysis due to the data no longer repre- variable) and the predictor variables. The predictor 
senting the same measurement parameter. variables of the initial models included “total ship 

Satellite Products—Signal detection areas movements,” “SST,” “[Chl],” “primary produc-
around Wake Island were estimated seasonally tion,” and “P1,” “P50,” and “P99” for full spectrum 
using the passive sonar equation and ranged from noise. Data were initially checked for outliers by 
2,000 to 8,000 km2 over the winter and spring sea- removing data points that were greater than three 
sons for frequencies from 20 to 50 Hz (Miksis- standard deviations (SDs) away from the mean. 
Olds et al., 2015). Satellite products were assessed Collinearity was evaluated and was found between 
over the same spatial scale to be as comparable as “primary production,” “SST,” and “[Chl],” which 
possible with the scale of acoustic area sampled. is not surprising given “SST” and “[Chl]” are used 
The standard NASA satellite imagery Moderate in the calculation of “primary production,” thus 
Resolution Imaging Spectroradiometer (MODIS)- “primary production” was removed from the list 
Aqua Level 3 products were used to assess 8-d of predictor variables. There was also collinear-
“chlorophyll concentration” ([Chl]), “primary pro- ity found between the sound level parameters P1 
duction” (kg C/m2), and “SST” at 9 × 9 km spatial and P50. However, rather than removing one of the 
resolution within the study region as fin whale vocal sound measures, both were included in different 
presence predictor variables. Eight-day temporally models. This was because the P1 and P50 levels 
binned data were chosen to reduce the number of were considered to be representative of different 
missing data points due to cloud coverage while still soundscape components, and, therefore, it was of 
allowing for enough information at scales relevant interest to assess whether either was a significant 
to whale response. Primary production from the predictor of fin whale calling.
Vertical Generalized Production Model (VGPM) GLM and GAM were fit in R, Version 3.5.1 
(Behrenfeld & Falkowski, 1997) was obtained (R Core Team, 2018), with a quasi-Poisson distri-
from the NASA MEaSUREs Ocean Color Product bution (due to overdispersion in the data) and log 
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link function. Predictor variables were removed in 
a step-wise process, based on a significance criteria 
of p < 0.05 using an F-test until all variables in the 
model were considered significant. QAIC (quasi-
Akaike Information Criterion) scores were used 
to select whether the GLM or GAM was the pre-
ferred model, as well as choosing between models 
containing P1 or P50 sound levels. An upper limit 
of 3 kts was set for each smooth function in the 
GAM to prevent overfitting. The number of knots 
in a GAM determines the dimension of the basis 
function used in the GAM and can affect the flex-
ibility of the smooth function (Wood, 2006). Model 
assumptions of linearity, appropriate mean-error 
variance, error independence, and normality were 
tested for the final model in R through diagnostic 
plots and relevant hypothesis tests.

Estimating Fin Whale Density
Harris et al. (2018b) described the automatic 
detection of fin whale calls in a pilot study from 
December 2007 through February 2008 in which 
fin whale density and distribution were estimated 
using acoustic bearings derived from the Wake 
Island CTBTO IMS sparse array data. The same 
methods were used here to estimate density across 
several years (2007 to 2013) during the peak call-
ing period as identified from the hourly presence 
data (November-March). A summary of the den-
sity estimation method is given below; full details 
are included in Harris et al. (2018b). 

Animal density can be estimated from acoustic 
cues (e.g., animal calls) using the following equa-
tion (from Marques et al., 2009):

(Eqn 1)

where D̂ = animal density, nc = number of 
detected cues, ĉ = false positive proportion, K 
= number of monitoring points, w = maximum 
detection range, P̂ = average probability of detec-
tion of a cue within radius w of the sensor

a

, T = 
total monitoring time, and r̂ = cue, or call, produc-
tion rate. 

In Harris et al. (2018b), detection probability, , is 
estimated for each detected cue, which combine to 
estimate the abundance of cues, , accounting for 
those cues missed during the detection process:

(Eqn 2) 

Therefore, the density estimator becomes

There are several steps to estimate density from 
bearing data, with many stages required to esti-
mate detection probability:

1. A subset of the recordings is manually 
checked for correct detection of the 20-Hz 
fin whale call. SNR of a sample of calls is 
measured, as well as noting whether the calls 
were automatically detected or not. SNR of 
the call was calculated using a noise level  
(NL) measured from the second of data pre-
ceding the call (in the same frequency band-
width as the measured call rms received level 
[RL]) (Harris et al., 2018b). The probability 
of automatically detecting a call is then mod-
eled as a function of SNR using a GAM. 
The resulting model, known as the detection 
characterization curve, can then be used to 
predict the detection probability, P(SNR), for 
each detected call across the whole dataset.

2. The monitored area is estimated using ele-
ments of the passive sonar equation: source 
level (SL) and NL distributions are used 
with a transmission loss (TL) model to deter-
mine ranges at which calls are expected to 
be masked from the automated detection 
process (i.e., P(SNR) is expected to be very 
low). These masked areas are then excluded 
from further analysis. Herein, the methods 
in Harris et al. (2018b) were altered so that 
the 99th and 1st percentiles from the SL 
and NL distributions across the entire data-
sets, respectively, were used as thresholds to 
define a loud call in quiet noise, and areas 
where the probability of detecting such a 
call were less than 0.0025 (i.e., 0.25%) were 
considered to be masked. This was due to the 
fact that initial thresholds (taking the 90th 
and 10th percentiles from the SL and NL 
distributions, respectively, and using a detec-
tion probability of 0.1) were found to be too 
conservative, potentially excluding areas in 
which animals could, in theory, be detected 
(Harris et al., 2018a).

3. The range of each detected cue is not known, 
but the distribution of possible ranges for 
each cue can be estimated via the passive 
sonar equation using the measured received 
level (RL), the bearing of each cue, and the 
associated bearing-specific TL, as well as 
the assumed SL distribution. The probabil-
ity density function (pdf) of ranges for each 
cue can then be estimated. This probabilis-
tic approach is used rather than estimating 
a single range because (1) SL for each cue 
does not have to be assumed known, instead 
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coming from a probability distribution; and kernel and spectrogram cross correlation to detect 
(2) TL does not increase monotonically with target cues and was run in Ishmael software 
range, so even if SL was known, a detected (Mellinger, 2002). The optimal detection threshold 
cue with a given RL could correspond to had a 0.1 false positive proportion and 0.56 to 0.6 
more than one range. false negative proportion over the 6-y time period, 

which is similar to the detector performance of the 
4. Account for missed cues by scaling each 3-mo study in Harris et al. (2018b). The detector 

cue using the predicted detection probabil- output fed custom MATLAB (Mathworks, 2016) 
ity from the detector characterization curve scripts to determine the root-mean-square (rms) RL 
given the cue’s SNR. In other words, each and SNR of each detected call. Every 155th half-
cue, i, on average corresponds to 1/P(SNRi) hour segment of data was analyzed manually for 
cues within the monitored area. fin whale calls. With this sampling scheme, a half-

hour was analyzed approximately every 3 d for a 
5. Sum the number of estimated cues at each total of 680 analyzed 30-min data segments over 

range and bearing step to give a total esti- the study period. This method of subsampling data 
mated abundance and use a generalized esti- prevented the analyzed data segment from consis-
mating equation (GEE) to produce a smooth tently falling on the same day of the week or same 
spatial map of cues across the monitored area, time of day, limiting potential bias introduced by 
taking into account spatial autocorrelation. consistent anthropogenic noise sources. The SNR 

of all manually detected calls was measured (using 
6. Use an appropriate density estimator (i.e., the rms RL and the NL in the 1 s preceding the 

include additional multipliers) to estimate call), and whether the automatic detector has suc-
density. Multipliers will include false posi- cessfully detected the call was also noted. Detector 
tive proportion (which may also include false performance was assumed not to change by year; 
cues caused by multipath and other types of therefore, a single detector characterization curve 
multiple arrival, although in this study, a 1 s was fit in R, Version 3.3.1 (R Core Team, 2016).
buffer was included in the automatic detec- Propagation Loss, Source Level, and Noise 
tion process to eliminate multiple arrivals), Level for Density Estimation—The propagation 
time spent monitoring (excluding periods loss model used in the density analysis (both for 
of high ambient noise that cause masking), the SL estimates and range distribution estimation) 
and cue rate. The method also allows a final was the OASIS Peregrine Parabolic Equation (PE) 
step for which density is only estimated over model (Heaney & Campbell, 2016) following the 
a restricted area (determined using a simula- methods in Miksis-Olds et al. (2015). The seasonal 
tion) where results may be more reliable due TL for a 20-Hz cue was modelled along 360 bear-
to detection probabilities generally being ings at 1º resolution. Seasonal (November-March) 
higher at smaller ranges. Further, the moni- sound speed profiles were obtained from The 
tored area specified in Step 2 may be initially World Ocean Atlas (https://www.nodc.noaa.gov/
overestimated; therefore, density estimates OC5/indprod.html), and the bathymetry was taken 
averaged across this defined area may be from the global bathymetry database ETOPO1 
underestimated. By restricting the area of (Amante & Eakins, 2009). Surface loss was neg-
inference further, any bias caused by the ini- ligible due to the low frequency of cues, and sea 
tial overestimation of the monitored area is floor parameters of soft sand sediment were used 
reduced. representing a global average of deep ocean sedi-

ment. Details of the geoacoustic parameters in the 
7. Estimate variance of detection probability specific regions were not known but should not 

using a bootstrap approach (n = 250 in this affect propagation in these environments due to 
study) and use the delta method (Seber, 1982) direct path/sound channel propagation. Whales 
to combine the variance contributed by sepa- were assumed to be calling at a depth of 15 m (fol-
rate components of the density estimator. lowing results in Stimpert et al., 2015).

Mean-square sound pressure spectral density 
Characterizing the Automatic Detector— levels were measured every minute as described 

Approximately 52,560 h of data (6 y × 365 d × above but were restricted to the 10 to 30 Hz band 
24 h) were processed from April 2007 through to more closely align with the target 20-Hz call. 
March 2013, capturing six full annual migra- These NL values were used to assess when the 
tion cycles (November-March) annually, totaling ambient NL exceeded the maximum 1-min NL 
21,600 h over the six migration cycles. An auto- value in which a manually checked fin whale call 
matic detector was run across the entire H11N1 was detected, therefore defining time periods that 
dataset. The detector used a synthetic detection were likely to be masked by noise.
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Given the array configuration at Wake Island, Results
it was possible to localize a sample of calls within 
10 km of the array, enabling SL to be estimated The 20-Hz fin whale song component was detected 
using time difference of arrival (TDOA) and two- in the region surrounding Wake Island with regular-
dimensional (2D) hyperbolic methods. RLs (rms) ity. The time series of hourly fin whale detections 
were measured from which SL estimates were back- summed over each week of the dataset identified 
calculated together with propagation loss estimates. the seasonal vocal presence of fin whales at this 
Bearings of calls were also estimated where possible location as November through March (Figure 1E). 
using TDOA methods. This information then directed the density estima-

Other Density Estimator Inputs—Call pro- tion analysis. A seasonal pattern was also observed 
duction rate was estimated from Stimpert et al., in fin whale vocal presence, which lagged the 
(2015) and was the same value used in the pilot warmest SST observed from July through October 
study (45.08 calls h−1; standard error: 22.31) given by 3 to 4 mo. Peak vocal detections occurred when 
the little data available about this parameter from waters were cooling (Figure 1D). This is consis-
any region. False positive proportion was also tent with peak fin whale detections following a 3 
estimated from the manual checks described to 4 mo lag in SST in the North Pacific (Stafford 
above and was assumed to stay constant across et al., 2009) and 3 to 4 mo lag of the spring phy-
years, so a single parameter was estimated. toplankton bloom in the North Atlantic (Visser 

et al., 2011). The most striking observation from 
the ocean sound-level time series was an increase 
in the P99 parameter occurring in conjunction with 

Figure 1. Time series of (A) shipping movements*; (B) P1, P50, and P99 mean-square sound pressure spectral density levels 
in the 5 to 115 band; (C) satellite-estimated chlorophyll concentration [Chl]; (D) satellite-estimated sea surface temperature 
(SST); and (E) fin whale vocal detection in hours per week from the Wake Island H11N1 hydrophone. *The data recording 
methods of Pacific Ocean ship movements changed in the fourth quarter of 2010, precluding the remainder of the shipping 
observations in the statistical analysis due to the data no longer representing the same measurement parameter.
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an increase in shipping (Figure 1A & B). There was Fin Whale Density Estimation
no observed trend on the P50 and P1 times series. Detector Characterization—A total of 602 fin 
The observed P99 increase over the duration of this whale calls were manually detected: 336 calls 
study period is consistent with an increased P99 were not automatically detected, while the 
trend in Miksis-Olds & Nichols (2016). Similarly, remaining 266 calls were detected. SNR values 
the relatively unchanging P1 and P50 values over ranged between -0.83 and 26.8; the mean SNRs 
time is consistent with the slightly negative linear (and SDs) of undetected calls and detected calls 
regression coefficients expressed as slopes in were 4.49 (1.51) and 13.32 (5.29), respectively. 
Miksis-Olds & Nichols (2016) for the same time The fitted GAM predicted that the majority of 
period. No salient patterns or trends were observed calls with an SNR greater than 10 dB were certain 
in the [Chl]  (Figure 1C). to be detected (Figure 3).

The final selected model was a GAM (with Source Level and Noise Level Estimates—SL 
a ΔQAIC score of 32 between the two candi- was estimable from 727 calls across the multiple 
date GLM and GAM models). Both P1 and P50 years. The sample size enabled a SL distribution 
sound levels were consistently retained in candi- by year to be described. There was slight variabil-
date models, but P50 was the preferred predictor. ity between the SL distributions (assumed to be 
Significant single predictors of fin whale vocal normally distributed and summarized on the dB 
detections in the final model were P50 sound levels, scale); annual means of the SL distributions ranged 
[Chl], and SST. Smooth plots depicting the relation- between 162.59 dB re 1 μPa m (SD: 4.57, n = 130) 
ship between the predictors and the response are in 2010/2011 and 164.43 dB re 1 μPa m (SD: 6.06, 
given in Figure 2. Fin whale detections increased n = 134) in 2012/2013. The annual means of the 
with increasing P50 sound levels and decreased NL distributions in the 10 to 30 Hz band (also 
with increasing SST. Fin whale detections showed assumed to be normally distributed and summa-
a slight increase from low to medium values of rized on the dB scale) measured in association 
[Chl], with a slight decrease at higher [Chl] values. with manually detected calls also showed annual 
The final model explained 60.2% of the deviance, variation, ranging between 88.11 dB re 1 μPa2/Hz 
and all model assumptions were met.

Figure 2. Plots of smooth functions (on the scale of the linear predictor) for significant predictors of fin whale temporal vocal 
patterns at Wake Island H11N1 in the Pacific Ocean. Dotted lines depict two standard errors above and below the smooth 
estimate. A rug plot (small vertical black lines on each x-axis) show the data for each predictor variable. The effective degrees 
of freedom used for each smooth function is shown in parentheses in the y-axis labels.
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(SD: 1.4, n = 75) in 2008/2009 and 91.39 dB re 
1 μPa2/Hz (SD: 2.82, n = 42) in 2007/2008.

Other Density Estimator Inputs—A total of 
82,681 cues were detected across all datasets. The 
SNR of 3,128 detections was below the lowest 
SNR of an automatically detected call included 
in the detector characterization analysis (SNR = 
2.33). Therefore, these calls were removed from 
the dataset to prevent extrapolation of the detec-
tor characterization curve, which could lead to 
extremely small predicted detection probabili-
ties. Of the remaining 79,553 detections, 39,126 
detections (49%) had measured bearings, ranging 
between 0.35º and 359.60º (Figure 4).

Figure 3. Logistic regression model of detection probability 
as a function of SNR; 95% confidence intervals (CIs) are 
shown.

Each 5-mo season had continuous monitoring 
over 3,648 h. Based on the 1-min ambient NL 
measurements across the whole dataset, very few 
minutes (n = 35) were omitted from the analysis 
due to potential masking caused by high noise. 
The false positive proportion, ĉ, was estimated 
to be 0.14 (standard error: 0.05). Finally, like the 
pilot study, the initial maximum detection radius, 
where detection probability was assumed to be 
negligible, was set to 1,000 km.

Density Results
Like the pilot study, the annual density surfaces 
demonstrated that the ranges at which the auto-
matically detected calls were predicted to occur 
were small compared to the initially considered 
1,000 km. Further, the monitored area was frag-
mented, driven by the fluctuating transmission 
loss patterns as a function of range (Figure 4). 
Total estimated detection area varied widely by 
year; the minimum was 729 km2 in 2010/2011 and 
the maximum was 7,262 km2 in 2012/2013.

The average estimated call densities (before 
the call production rate parameter was applied) 
ranged between 0.003 calls h−1 km2 in 2008/2009 
to 0.011 calls h−1 km2 in 2009/2010. When the call 
production rate from the Southern Californian 
Bight was applied, average fin whale densities 
ranged from 0.07 animals/1,000 km2 in 2008/2009 
to 0.25 animals/1,000 km2 in 2009/2010. However, 
the results were re-analyzed to restrict the area of 
inference to 10 km, following simulation results 

Figure 4. Two estimated georeferenced plots from the 2010/2011 season (left) and 2012/2013 season (right) showing the 
irregular and patchy estimated monitored area given assumptions based on measurements of SL, NL, TL, and detector 
performance. The colors depict the estimated call density (calls/km2). Note, however, that the apparent low density at larger 
ranges from the instrument may be due to overestimation of the monitored area, and, thus, these areas are omitted from the 
final part of the analysis.
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Figure 5. Predicted fin whale animal and call densities by 
season with associated 95% CI. Note that the call density 
values in the figure are per 1,000 km2 as opposed to the 
call density numbers presented in the text per km2. These 
results were generated after restricting inference to within 
10 km of the instrument (H11N1, in this case). Detector 
performance, false positive proportions, and call production 
rate were assumed to remain constant across years in the 
animal and call density estimations.

in Harris et al. (2018b) that suggested that results 
may be robust when restricted to this smaller 
range. In this case, call densities increased, ranging 
between 0.020 calls h−1 km2 in 2010/2011 to 0.061 
calls h−1 km2 in 2011/2012 (Figure 5). Applying 
the call production rate resulted in annual animal 
density estimates ranging between 0.5 ani-
mals/1,000 km2 (in 2008/2009 and 2010/2011) and 
1.4 animals/1,000 km2 in 2011/2012 (Figure 5). 
Coefficient of variation (CV) estimates for the 
animal density estimates ranged from 0.56 to 0.80. 
Due to the call rate parameter and detector false 
positive performance being kept constant across 
years, the call density estimates followed the same 
patterns as the animal density estimates but had 
smaller CVs (0.27 to  0.63) due to the removal of 
the call rate parameter from the estimated variance.

Discussion

Estimates of animal abundance or density are 
critical to effective management and regulation 
of marine mammal stocks because they provide 
a quantitative measure related to tracking popula-
tion health, recovery, impact, and behavioral ecol-
ogy. Animal density information has traditionally 
been obtained from visual sightings through the 
implementation of distance sampling and mark-
recapture methods (e.g., Borchers et al., 2002; 
Buckland et al., 2004). While effective over small 
temporal and spatial scales, visual methods used 
for marine mammals are limited by the propor-
tion of time animals spend at the surface and are 

available for sighting, sighting conditions (e.g., 
sea state, darkness, etc.), and cost, constrain-
ing a majority of dedicated surveys to coastal or 
nearshore areas. These constraints have limited 
the density estimate of fin whales in the North 
Pacific to specific nearshore regions, and there is 
currently no population estimate for fin whales in 
the North Pacific as a whole (Barlow, 1995, 2003, 
2010; Forney et al., 1995).

Estimating animal density from passive acous-
tic recordings provides another method to assess 
animal abundance by employing detections of 
species-specific vocalizations. Techniques devel-
oped for estimating animal density from acous-
tic time series expands the geographic, temporal, 
and spatial scale of visual methods because they 
are less limited by visibility conditions and cost, 
hardware can be deployed for long periods of time 
in remote locations, and underwater propagation 
conditions extend the detection area of animals 
compared to visual surveys. Long-time series pro-
vided by passive acoustic monitoring supporting 
density estimation now broaden the application of 
passive acoustic recordings to questions requiring 
estimates of absolute animal numbers such as stock 
assessments, impacts of disturbance, and assess-
ment of risk and appropriate mitigation procedures. 
However, accurate interpretation of changes in 
animal density patterns or trends requires an under-
standing of confounding environmental factors 
impacting animal behavior, movements, and dis-
tribution. The present study is the first multi-year 
acoustic density estimation time series to be exam-
ined in the context of local and basin scale ocean 
conditions for any baleen whale species.

The multiple regression analysis of environ-
mental parameters most predictive of fin whale 
vocal presence in the Equatorial Pacific indicated 
that vocal activity was linked to seasonal trends in 
SST. Cooler SST is indicative of physical condi-
tions wherein nutrients can be brought into sur-
face waters, increasing primary production rates. 
In this region, greater numbers of fin whales are 
detected during periods of cooler SST when pri-
mary production also increases. Fin whales are 
rather cosmopolitan with their diets and eat krill 
(euphausids), other zooplankton, and schooling 
fish (Nemoto & Kasuya, 1965). SST and associ-
ated primary productivity were also identified as 
the best oceanographic variables for predicting 
fin whale presence in the subarctic and Northeast 
Pacific over a 6-y period from 1997 to 2002 and 
in the North Atlantic over a 4-y period from 2004 
to 2007 (Stafford et al., 2009; Visser et al., 2011), 
indicating that food is a strong driver of fin whale 
movements and distribution despite the season, 
location, or migration phase. The overall distribu-
tion of fin whales assessed from visual sightings 
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in summer in the subarctic North Pacific also coin- corresponding changes in the SST, [Chl], and 
cided closely with the distribution of zooplankton primary productivity of a region (Newman et al., 
biomass (Sugimoto & Tadokoro, 1997), providing 2003), yet ENSO and PDO values were not 
further support that the use of vocal detections observed to be tightly linked to the seasonal aver-
as a proxy for animal presence is comparable to ages for these parameters at this location or time. 
visual survey results. While the current work is suggestive of a relation-

An additional relationship was identified between ship between climate patterns and fin whale abun-
increases in fin whale vocal activity and increases in dance, and successfully demonstrated the feasi-
the regional median sound level indicated through bility of such studies, a longer time series more 
the P50 variable. The result of P50 being a strong reflective of the ENSO and PDO cycles is needed 
predictor of fin whale vocal presence begs the ques- to be able to draw statistically valid inferences. 
tions as to whether this is a confounding factor cap- Further, the density estimates could be pro-
turing distant fin whale song as background noise duced at a finer temporal resolution to be com-
in the soundscape or whether other sources are parable with the oceanographic data presented 
driving the corresponding increases. Fin whales are in this study. Then, the density estimates could 
not the only large, low-frequency call producing be treated as the response variable and mod-
whales inhabiting the region around Wake Island. eled directly with the environmental covariates. 
Sei (Balaenoptera borealis borealis), blue, Bryde’s This approach has already been demonstrated 
(Balaenoptera edeni), and minke whales have been for cetacean species using acoustic density esti-
observed to be seasonally present in the region and mates—for example, for fin whales in the Atlantic 
overlap in time and space with fin whales (Donovan, (Thomas et al., 2013) and harbor porpoises in 
1991; Stafford et al., 2001; Oleson et al., 2003; the Baltic Sea (Static Acoustic Monitoring of the 
Horwood, 2009). Vocalizing whales were identified Baltic Sea Harbour Porpoise [SAMBAH], 2017). 
as the source category driving soundscape dynamics Combining density estimation with modeling was 
over the same time period at this location in Miksis- outside the scope of this study due to the amount 
Olds & Nichols (2016). It is likely that multiple spe- of auxiliary analyses required for the bearing-only 
cies vocalizing at a distance are contributing to the density estimation method; it was not feasible to 
increase in the seasonal median sound levels pre- process enough data to allow for independent esti-
dictive of fin whale vocal presence as there was no mates of all the inputs required for the method, 
overt seasonal trend observed in shipping activity. such as SLs and NLs, as well as characterizing the 

The environmental variables most predictive of detector, at a reduced temporal scale. The number 
fin whale vocal presence provided information on of auxiliary analyses required for the bearing-only 
what oceanographic conditions were most closely method is a disadvantage of this approach com-
linked to regional and seasonal fin whale presence, pared to other density estimation methods, such as 
but they did not provide information on whether distance sampling and spatial capture-recapture, 
more or fewer whales were present in the area both in terms of amount of analysis time needed 
across years and what may be driving observed but also the potential for these estimated inputs to 
differences. Changes in animal abundance are be biased and/or have large uncertainty. However, 
needed to draw any meaningful conclusions on despite the coarse scale seasonal analysis, the 
the impact of changing conditions on animal pop- acoustically derived density estimation methods 
ulations. When the acoustically derived fin whale described within this work illustrate the potential 
estimates were compared with seasonal averages for the bearing-only density estimation method 
of the environmental parameters most predictive to be another valuable tool for assessing the 
of whale presence and the larger climatic indices relationship between environmental conditions 
for ENSO and PDO (Table 1), the only striking and animal density/abundance for many marine 
observation was that one of the largest changes mammal species in the future.
in abundance coincided with phase shifts in both How comparable are the acoustic density esti-
ENSO and PDO. There was a negative to positive mates to other abundance estimates of fin whales 
ENSO and PDO phase shift from the 2008/2009 in the North Pacific? The density estimates 
season to the 2009/2010 season corresponding to derived in this study are over a magnitude higher 
an increase in vocally detected fin whales north than the acoustically derived estimates reported 
of Wake Island. During the 2010/2011 season, by McDonald & Fox (1999) and visual estimates 
the ENSO and PDO reverted back to a negative reported by Barlow (2003) in Hawaiian waters. 
phase along with a decrease in whale density. The McDonald & Fox (1999) did not use a cue rate 
year with the largest estimated fin whale numbers multiplier to estimate number of animals from 
corresponded with the most negative PDO phase acoustic encounters as was done in the current 
observed over the duration of the study. Typically, work (but see the discussion below about the limi-
ENSO and PDO phase shifts are coupled to tations of the cue rate used in this study). Detection 
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Table 1. Average seasonal (November-March) values of climate indices and environmental parameters most predictive of 
fin whale vocal presence around Wake Island. PDO index data were obtained from http://research.jisao.washington.edu/pdo/
PDO.latest.txt. The Oceanic Niño Index (ONI) is a 3-mo running mean of ERSST, Version 5, SST anomalies in the Niño 3.4 
region (5º N to 5º S, 120º to 170º W), based on centered 30-y base periods updated every 5 y. It is one measure of ENSO, 
and data were downloaded from http://origin.cpc.ncep.noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php. 
Blue highlights the maximum value within each parameter column, and green highlights the minimum value within each 
parameter column.

PDO ONI SST (ºC) [Chl] (mg m-3) PP
P50 (dB re  
1 µPa2/Hz)

DE  
(animals/ 

1,000 km2)

2007/2008 -0.83 -1.46 27.03 0.034 110.47 93.8 0.6

2008/2009 -1.33 -0.66 26.06 0.037 127.04 93.4 0.5

2009/2010 0.35 1.32 26.25 0.037 125.27 93.7 1.0

2010/2011 -0.89 -1.32 26.25 0.037 127.64 93.8 0.5

2011/2012 -1.48 -0.80 26.95 0.032 108.72 93.0 1.4

2012/2013 -0.45 -0.22 27.26 0.035 107.47 92.9 0.8

probability was also assumed to be certain within parameter and assess how it may vary over space 
a defined monitored area, and so a minimum and time. Without this information, and by assum-
population density estimate was derived with ing a constant call production rate, it is possible that 
the authors noting that more sophisticated future observed changes in animal density estimates may 
approaches may indeed incorporate cue counting actually be caused by the same number of animals 
methods. Fin whale density estimates in the cur- altering their vocal behavior.
rent study, however, are consistent with density It is not definitively known which stock of 
estimates derived from visual line transects con- fin whale was recorded at Wake Island. The 
ducted in the early 1990s within 161 km of the November-March detection period observed in 
California coast (1.1 animals/1,000 km2; Barlow, the study directly overlaps with the peak period 
1995; Forney et al., 1995) and within 483 km of of seasonal fin whale detections in the Northeast 
the California-Oregon-Washington coastline in Pacific and Hawaii (McDonald & Fox, 1999; 
2008 (2.5 animals/1,000 km2; Barlow, 2010). Stafford et al., 2009). Although the animal densi-

In this study, assumptions were made about ties are similar between the animals recorded in 
detector performance and false positive proportions the Equatorial Pacific and Northeast Pacific, the 
remaining constant across years; such assumptions large distance between the two locations does not 
should be investigated if this study were to be refined support the hypothesis that the Wake Island fin 
and expanded to a longer time series. Further, the whales are from the Northeast Pacific population. 
variance from the detection probability estimation It is possible that the animals recorded off Hawaii 
process was a large component of the overall vari- and Wake Island could be from the same popula-
ance in density for each year and potentially could tion spread out in range. It is also likely that the 
be reduced through an increased number of boot- whales recorded in the Equatorial Pacific are from 
strap iterations. Also, the propagation model (used a southern hemisphere stock recorded during the 
both to estimate SL and as part of the main method) breeding period (Mizroch et al., 1984). There is 
was assumed to be known—no uncertainty was also the possibility that the animals recorded in 
included for the propagation. The method frame- the Wake Island region are a separate and undocu-
work could, however, readily be extended to incor- mented population. The tracking of individual 
porate additional uncertainty regarding propagation animals will be necessary to determine which fin 
loss. Finally, the cue rate parameter was a major whale stock is being recorded off Wake Island, and 
limitation of the animal density estimates in this the density estimation methods employed herein 
study; along with detection probability, cue rate was can then be applied to stock abundance estimates 
another major source of uncertainty in the overall over time as the Wake Island dataset continues to 
variance estimates as the cue rate information was grow in length.
derived from a study in another part of the Pacific Application of a density estimation method 
at a different time (Stimpert et al., 2015). Therefore, based on the bearing estimates of each detected 
it is imperative to improve understanding of this fin whale call from a sparse three-element array 
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provided seasonal estimates of local fin whale survey (NOAA Technical Memorandum NOAA-TM-
density around Wake Island. While the dataset NMFS-SWFSC-456). Silver Spring, MD: National Oceanic 
was not long enough to statistically relate changes and Atmospheric Administration.
in animal abundance to long-term climate pat- Barlow, J., & Forney, K. A. (2007). Abundance and popula-
terns, it provides a method for doing so in the tion density of cetaceans in the California Current eco-
future without the use of instrumented military system. Fishery Bulletin, 105, 509-526.
arrays. The methods are also directly translat- Barlow, J., & Taylor, B. (2005). Estimates of sperm 
able to the other five CTBTO IMS locations in whale abundance in the northeastern temperate 
the South Atlantic, Indian, South Pacific, and Pacific from a combined acoustic and visual survey. 
Southern Oceans (Coyne et al., 2012; Haralabus Marine Mammal Science, 21, 429-445. https://doi.
et al., 2017) and any other sparse array that can org/10.1111/j.1748-7692.2005.tb01242.x 
estimate the bearing to detected calls, making this Behrenfeld, M. J., & Falkowski, P. G. (1997). Photosynthetic 
capability widely accessible where other density rates derived from satellite-based chlorophyll concen-
estimation approaches cannot be implemented. tration. Limnology and Oceanography, 42, 1-20. https://

doi.org/10.4319/lo.1997.42.1.0001
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